Jawaban Uji Kompetensi Semester 2 Matematika Kelas 8 Halaman 311
uji kompetensi 7 jawaban matematika kelas 8 semester 2 halaman 113-114
1. uji kompetensi 7 jawaban matematika kelas 8 semester 2 halaman 113-114
Jawaban Uji Kompetensi 7 Matematika Kelas 8 Semester 2 PGJawaban Pendahuluan
Soal matematika di atas merupakan materi dari lingkaran.
PembahasanLingkaran adalah suatu geometri bidang atau bangun datar dimana terdapat kumpulan titik-titik yang mempunyai jarak yang bernilai sama atau tetap terhadap titik tunggal yang bersifat semu, sehingga titik-titik tersebut membentuk garis tertutup berupa lengkungan dalam satu putaran penuh secara berulang-ulang.
Pada suatu bidang lingkaran, terdapat jari-jari lingkaran (r) dan diameter lingkaran (d), sehingga bentuk persamaannya yaitu r = d/2 atau d = 2r. Rumus umum lingkaran adalah dengan menggunakan nilai konstanta pi/phi yang dinotasikan dalam π yang mempunyai nilai bilangan riil yang mendekati bilangan pecahan 22/7 dan bilangan desimal 3,14 sehingga ditulis menjadi π ≈ 22/7 ≈ 3,14.
Rumus menghitung keliling lingkaran
K = π ⋅ 2r
K = π ⋅ d
K busur = π ⋅ 2r ⋅ (m∠ / 360° )
K busur = π ⋅ d ⋅ (m∠ / 360° )
Rumus menghitung luas lingkaran
L = π ⋅ r ⋅ r = π ⋅ r²
L = π ⋅ d/2 ⋅ d/2 = π ⋅ d²/4
L juring = π ⋅ r² ⋅ (m∠ / 360° )
L juring = π ⋅ d²/4 ⋅ (m∠ / 360° )
Rumus untuk menghitung garis singgung persekutuan dua lingkaran adalah dengan menggunakan teorema Pythagoras, dimana j adalah garis singgung luar atau dalam lingkaran, p adalah jarak antara kedua titik pusat lingkaran, dan R dan r sebagai jari-jari lingkaran besar dan kecil.
Rumus garis singgung luar lingkaran
j² = p² - (R - r)²
Rumus garis singgung dalam lingkaran
j² = p² - (R + r)²
1.
Dik: Juring @ m∠ pusat = 90°, L = 78,5cm² (π = 3,14)
Dit: r=?
Jawab:
L juring = π ⋅ r² ⋅ (m∠ / 360° )
78,5cm² = 3,14 ⋅ r² ⋅ (90° / 360° )
100cm² = r²
r = 10cm ... (pilihan A)
2.
Dik: Busur @ K = 22cm, m∠ pusat = 120° (π = 22/7)
Dit: r=?
Jawab:
K busur = π ⋅ 2r ⋅ (m∠ / 360° )
22cm = 22/7 ⋅ 2r ⋅ (120° / 360° )
r = 10,5cm ... (pilihan tidak ada)
3.
Dik: Busur @ K = 16,5cm, d = 42cm (π = 22/7)
Dit: m∠ pusat=?
Jawab:
K busur = π ⋅ d ⋅ (m∠ / 360° )
16,5cm = 22/7 ⋅ 42cm ⋅ (m∠ / 360° )
m∠ = 45° ... (pilihan A)
4.
Dik: Juring @ L = 57,75cm², m∠ pusat = 60° (π = 22/7)
Dit: d=?
Jawab:
L juring = π ⋅ r² ⋅ (m∠ / 360° )
57,75cm² = 22/7 ⋅ r² ⋅ (60° / 360° )
110,25cm² = r²
r = 10,5cm ... (pilihan B)
5.
Dik: Busur @ r = 21cm, m∠ pusat = 30° (π = 22/7)
Dit: K=?
Jawab:
K busur = π ⋅ 2r ⋅ (m∠ / 360° )
K busur = 22/7 ⋅ 2(21cm) ⋅ (30° / 360° )
K busur = 11cm ... (pilihan A)
6.
Dik: Lingkaran O
Dit: m∠BAD=?
Jawab:
2 ⋅ Sudut keliling = Sudut pusat
2 ⋅ m∠BAD = 110°
m∠BAD = 55° ... (pilihan A)
7.
Dik: Lingkaran O
Dit: m∠AOB=?
Jawab:
m∠APB + m∠AQB + m∠ARB = 144°
3 ⋅ Sudut keliling = 144°
Sudut keliling = 48°
2 ⋅ Sudut keliling = Sudut pusat
2 ⋅ 48° = m∠AOB
m∠AOB = 96° ... (pilihan tidak ada)
8.
Dik: Lingkaran @ d = 0,6m
Jarak = 10000km = 10000000m
Dit: Putaran=?
Jawab:
K lingkaran * putaran = jarak
π ⋅ d * n = 10000000m
3,14 ⋅ 0,6m * n = 10000000m
n ≈ 5000000 ... (pilihan D)
9.
Dik: Persegi @ s = 26cm
2 buah 1/4 lingkaran @ r = 14cm
Dit: K arsir=?
Jawab:
K = K persegi + K lingkaran
K = 4s + 2 ⋅ 1/4 ⋅ π ⋅ 2r
K = 4(26cm) + 1/2 ⋅ 22/7 ⋅ 2(14cm)
K = 158cm ... (pilihan C)
10.
Dik: Persegi @ s = 14cm
1/2 lingkaran @ d = 14cm, r = 7cm
Dit: L arsir=?
Jawab:
L = L persegi + L lingkaran
L = s² + 1/2 ⋅ π ⋅ r²
L = (14cm)² + 1/2 ⋅ 22/7 ⋅ (7cm)²
L = 273cm² ... (pilihan C)
11.
Dik: Singgung luar
j = 12cm, rC = 7,5cm, rD = 4cm
Dit: p=?
Jawab:
p² = j² + (rC - rD)²
p² = (12cm)² + (7,5cm - 4cm)²
p = √156,25 cm²
p = 12,5cm ... (pilihan A)
12.
Dik: Singgung dalam
p = 7,5cm, rA = 2,5cm, rB = 2cm
Dit: j=?
Jawab:
j² = p² - (rA + rB)²
j² = (7,5cm)² - (2,5cm + 2cm)²
j = √36 cm²
j = 6cm ... (pilihan C)
13.
Dik: Singgung luar
R = 1,5cm, p = 2,5cm, j = 2,4cm
Dit: j=?
Jawab:
(R - r)² = p² - j²
(1,5cm - r)² = (2,5cm)² - (2,4cm)²
(1,5cm - r) ² = 0,49cm²
1,5cm - r = 0,7cm
r = 0,8cm ... (pilihan B)
14.
Dik: Singgung luar
R = 19cm, r = 10cm, j = 40cm
Dit: p=?
Jawab:
p² = j² + (R - r)²
p² = (40cm)² + (19cm - 10cm)²
p = √1681cm²
p = 41cm ... (pilihan A)
15.
Dik: Singgung luar
p = 17cm, j = 15cm
Dit: p=?
Jawab:
(R - r)² = p² - j²
(R - r)² = (17cm)² - (15cm)²
R - r = 8cm
R = 10cm dan r = 2cm ... (pilihan D)
16.
Dik: Singgung luar
p = 15cm, j = 12cm
Dit: p=?
Jawab:
(R - r)² = p² - j²
(R - r)² = (15cm)² - (12cm)²
R - r = 9cm
R = 12cm dan r = 3cm ... (pilihan B)
17.
Dik: Singgung luar
r1 = 13cm, p = 20cm, j = 16cm
Dit: r2=?
Jawab:
(R - r)² = p² - j²
(R - r)² = (20cm)² - (16cm)²
13cm - r = 12cm
r = 1cm ... (pilihan B)
18.
Dik: Singgung luar
D = 15cm, R = 7,5cm
d = 10cm, r = 5cm
p = 70cm
Dit: j=?
Jawab:
j² = p² - (R - r)²
j² = (70cm)² - (7,5cm - 5cm)²
j ≈ 69cm ... (pilihan A)
19.
Dik: Singgung dalam
j = 10cm, p = 8cm
Dit: p=?
Jawab:
(R + r)² = p² - j²
(R + r)² = (10cm)² - (8cm)²
R + r = 6cm
R = 5cm dan r = 1cm ... (pilihan B)
20.
Dik: Singgung dalam
p = 20cm, j = 16cm, r1 = 10cm
Dit: p=?
Jawab:
(r1 + r2)² = p² - j²
(10cm + r2)² = (20cm)² - (16cm)²
10cm + r2 = 12cm
r2 = 2cm ... (pilihan A)
Kesimpulan Pelajari lebih lanjut-----------------------------
Detil JawabanKelas : VIII/8 (2 SMP)
Mapel : Matematika
Bab : Bab 7 - Lingkaran
Kode : 8.2.7
Kata Kunci : lingkaran, juring, busur, sudut pusat, sudut keliling, persinggungan lingkaran
===
2. kunci jawaban halaman 66 matematika uji kompetensi 2 kelas 8 semester 1
Kunci jawaban halaman 66 matematika uji kompetensi 2 kelas 8 semester 1. Disini saya akan menjawab 20 soal pilihan ganda dalam uji kompetensi 2.
Pembahasan1. Diketahui titik A(3, 1), B(3, 5), C(–2, 5). Jika ketiga titik tersebut dihubungkan akan membentuk …
C. Segitiga siku-siku(gambarnya dapat dilihat di lampiran, segitiga tersebut siku-siku di titik B)
2. Diketahui dalam koordinat kartesius, terdapat titik P, Q dan R. P(4, 6) dan Q(7, 1). Jika titik P, Q dan R dihubungkan akan membentuk segitiga siku-siku, maka koordinat titik R adalah …
D. (4, 1)(Caranya ada di link berikut: https://brainly.co.id/tugas/12005066)
3. Koordinat titik A adalah …
C. (7, 5)Karena x = 7 dan y = 5
4. Koordinat titik C adalah …
B. (–4, 4)Karena x = –4 dan y = 4
5. Koordinat titik F adalah …
D. (–8, –6)Karena x = –8 dan y = –6
6. Koordinat titik H adalah …
C. (6, –5)Karena x = 6 dan y = –5
7. Titik-titik yang berjarak 3 satuan terhadap sumbu X adalah …
C. titik B dan EKarena titik B dan E berturut-turut memiliki ordinat: y = 3 dan y = –3
8. Titik-titik yang berjarak 4 satuan terhadap sumbu Y adalah …
A. titik B dan CKarena titik B dan C berturut-turut memiliki absis: x = 4 dan x = –4
9. Titik-titik yang ada di kuadran II adalah ...
B. titik C dan DKarena titik C dan D memiliki x negatif dan y positif
10. Titik-titik yang ada di kuadran IV adalah …
D. titik G dan HKarena titik G dan H memiliki x negatif dan y negatif
11. Garis-garis yang sejajar dengan sumbu X adalah …
D. Garis k dan lKarena garis k dan l berturut-turut memiliki persamaan y = 3 dan y = –6
12. Garis-garis yang sejajar dengan sumbu Y adalah …
A. garis m dan nKarena garis m dan n berturut-turut memiliki persamaan x = –5 dan x = 2
13. Garis m dan n adalah dua garis yang …
D. SejajarKarena kedua garis tersebut sejajar sumbu Y
14. Garis n dan k adalah dua garis yang …
C. berpotonganKarena memiliki titik persekutuan yaitu di titik (2, 3)
15. Garis yang berada di sebelah kanan sumbu Y adalah …
B. garis nKarena persamaan garis n adalah x = 2
16. Garis yang berada di bawah sumbu X adalah …
D. garis lKarena persamaan garis l adalah y = –6
17. Jarak garis m terhadap sumbu Y adalah …
D. 5 satuanKarena persamaan garis m adalah x = –5
18. Jarak garis k terhadap sumbu X adalah …
B. 3 satuanKarena persamaan garis k adalah y = 3
19. Koordinat titik potong garis m dan l adalah …
C. (–5, –6)Karena persamaan garis m dan l berturut-turut adalah x = –5 dan y = –6
20. Koordinat titik potong garis n dan l adalah …
D. (2, –6)Karena persamaan garis n dan l berturut-turut adalah x = 2 dan y = –6
Pelajari lebih lanjutContoh soal lain tentang koordinat
Jelaskan apa yang dimaksud dengan koordinat relatif!: brainly.co.id/tugas/552137 Koordinat pada bangun datar: brainly.co.id/tugas/8826902 Letak kuadran suatu titik: brainly.co.id/tugas/16884973------------------------------------------------
Detil JawabanKelas : 8
Mapel : Matematika
Kategori : Bilangan Koordinat
Kode : 8.2.3
#AyoBelajar
3. jawaban uji kompetensi 8 matematika kelas 7 semester 2 halaman 289- 298
Jawab:
1. C. 120 mm
2. A. 125 × 100
3. B. 32 × 40
4. B. 4,25 cm
5. D. 4,75 cm
6. A. Gambar (a)
7. A. 20 cm
8. C. 34 cm2
9. A. 16 cm2
10. C. 140 m2
11. B. 7,2 cm
12. C. 80
13. C. 80°
14. C. 120
15 C. 9 cm
16. D. 3, 2, 1, 4
17. C. 6 M
18. C. 144 m2
19. D. 72 cm2
20. D. 20√2
4. jawaban uji kompetensi 7 matematika kelas 8 semester 2 PG
Jawaban Uji Kompetensi 7 Matematika Kelas 8 Semester 2 PGJawaban Pendahuluan
Soal matematika di atas merupakan materi dari lingkaran.
PembahasanLingkaran adalah suatu geometri bidang atau bangun datar dimana terdapat kumpulan titik-titik yang mempunyai jarak yang bernilai sama atau tetap terhadap titik tunggal yang bersifat semu, sehingga titik-titik tersebut membentuk garis tertutup berupa lengkungan dalam satu putaran penuh secara berulang-ulang.
Pada suatu bidang lingkaran, terdapat jari-jari lingkaran (r) dan diameter lingkaran (d), sehingga bentuk persamaannya yaitu r = d/2 atau d = 2r. Rumus umum lingkaran adalah dengan menggunakan nilai konstanta pi/phi yang dinotasikan dalam π yang mempunyai nilai bilangan riil yang mendekati bilangan pecahan 22/7 dan bilangan desimal 3,14 sehingga ditulis menjadi π ≈ 22/7 ≈ 3,14.
Rumus menghitung keliling lingkaran
K = π ⋅ 2r
K = π ⋅ d
K busur = π ⋅ 2r ⋅ (m∠ / 360° )
K busur = π ⋅ d ⋅ (m∠ / 360° )
Rumus menghitung luas lingkaran
L = π ⋅ r ⋅ r = π ⋅ r²
L = π ⋅ d/2 ⋅ d/2 = π ⋅ d²/4
L juring = π ⋅ r² ⋅ (m∠ / 360° )
L juring = π ⋅ d²/4 ⋅ (m∠ / 360° )
Rumus untuk menghitung garis singgung persekutuan dua lingkaran adalah dengan menggunakan teorema Pythagoras, dimana j adalah garis singgung luar atau dalam lingkaran, p adalah jarak antara kedua titik pusat lingkaran, dan R dan r sebagai jari-jari lingkaran besar dan kecil.
Rumus garis singgung luar lingkaran
j² = p² - (R - r)²
Rumus garis singgung dalam lingkaran
j² = p² - (R + r)²
1.
Dik: Juring @ m∠ pusat = 90°, L = 78,5cm² (π = 3,14)
Dit: r=?
Jawab:
L juring = π ⋅ r² ⋅ (m∠ / 360° )
78,5cm² = 3,14 ⋅ r² ⋅ (90° / 360° )
100cm² = r²
r = 10cm ... (pilihan A)
2.
Dik: Busur @ K = 22cm, m∠ pusat = 120° (π = 22/7)
Dit: r=?
Jawab:
K busur = π ⋅ 2r ⋅ (m∠ / 360° )
22cm = 22/7 ⋅ 2r ⋅ (120° / 360° )
r = 10,5cm ... (pilihan tidak ada)
3.
Dik: Busur @ K = 16,5cm, d = 42cm (π = 22/7)
Dit: m∠ pusat=?
Jawab:
K busur = π ⋅ d ⋅ (m∠ / 360° )
16,5cm = 22/7 ⋅ 42cm ⋅ (m∠ / 360° )
m∠ = 45° ... (pilihan A)
4.
Dik: Juring @ L = 57,75cm², m∠ pusat = 60° (π = 22/7)
Dit: d=?
Jawab:
L juring = π ⋅ r² ⋅ (m∠ / 360° )
57,75cm² = 22/7 ⋅ r² ⋅ (60° / 360° )
110,25cm² = r²
r = 10,5cm ... (pilihan B)
5.
Dik: Busur @ r = 21cm, m∠ pusat = 30° (π = 22/7)
Dit: K=?
Jawab:
K busur = π ⋅ 2r ⋅ (m∠ / 360° )
K busur = 22/7 ⋅ 2(21cm) ⋅ (30° / 360° )
K busur = 11cm ... (pilihan A)
6.
Dik: Lingkaran O
Dit: m∠BAD=?
Jawab:
2 ⋅ Sudut keliling = Sudut pusat
2 ⋅ m∠BAD = 110°
m∠BAD = 55° ... (pilihan A)
7.
Dik: Lingkaran O
Dit: m∠AOB=?
Jawab:
m∠APB + m∠AQB + m∠ARB = 144°
3 ⋅ Sudut keliling = 144°
Sudut keliling = 48°
2 ⋅ Sudut keliling = Sudut pusat
2 ⋅ 48° = m∠AOB
m∠AOB = 96° ... (pilihan tidak ada)
8.
Dik: Lingkaran @ d = 0,6m
Jarak = 10000km = 10000000m
Dit: Putaran=?
Jawab:
K lingkaran * putaran = jarak
π ⋅ d * n = 10000000m
3,14 ⋅ 0,6m * n = 10000000m
n ≈ 5000000 ... (pilihan D)
9.
Dik: Persegi @ s = 26cm
2 buah 1/4 lingkaran @ r = 14cm
Dit: K arsir=?
Jawab:
K = K persegi + K lingkaran
K = 4s + 2 ⋅ 1/4 ⋅ π ⋅ 2r
K = 4(26cm) + 1/2 ⋅ 22/7 ⋅ 2(14cm)
K = 158cm ... (pilihan C)
10.
Dik: Persegi @ s = 14cm
1/2 lingkaran @ d = 14cm, r = 7cm
Dit: L arsir=?
Jawab:
L = L persegi + L lingkaran
L = s² + 1/2 ⋅ π ⋅ r²
L = (14cm)² + 1/2 ⋅ 22/7 ⋅ (7cm)²
L = 273cm² ... (pilihan C)
11.
Dik: Singgung luar
j = 12cm, rC = 7,5cm, rD = 4cm
Dit: p=?
Jawab:
p² = j² + (rC - rD)²
p² = (12cm)² + (7,5cm - 4cm)²
p = √156,25 cm²
p = 12,5cm ... (pilihan A)
12.
Dik: Singgung dalam
p = 7,5cm, rA = 2,5cm, rB = 2cm
Dit: j=?
Jawab:
j² = p² - (rA + rB)²
j² = (7,5cm)² - (2,5cm + 2cm)²
j = √36 cm²
j = 6cm ... (pilihan C)
13.
Dik: Singgung luar
R = 1,5cm, p = 2,5cm, j = 2,4cm
Dit: j=?
Jawab:
(R - r)² = p² - j²
(1,5cm - r)² = (2,5cm)² - (2,4cm)²
(1,5cm - r) ² = 0,49cm²
1,5cm - r = 0,7cm
r = 0,8cm ... (pilihan B)
14.
Dik: Singgung luar
R = 19cm, r = 10cm, j = 40cm
Dit: p=?
Jawab:
p² = j² + (R - r)²
p² = (40cm)² + (19cm - 10cm)²
p = √1681cm²
p = 41cm ... (pilihan A)
15.
Dik: Singgung luar
p = 17cm, j = 15cm
Dit: p=?
Jawab:
(R - r)² = p² - j²
(R - r)² = (17cm)² - (15cm)²
R - r = 8cm
R = 10cm dan r = 2cm ... (pilihan D)
16.
Dik: Singgung luar
p = 15cm, j = 12cm
Dit: p=?
Jawab:
(R - r)² = p² - j²
(R - r)² = (15cm)² - (12cm)²
R - r = 9cm
R = 12cm dan r = 3cm ... (pilihan B)
17.
Dik: Singgung luar
r1 = 13cm, p = 20cm, j = 16cm
Dit: r2=?
Jawab:
(R - r)² = p² - j²
(R - r)² = (20cm)² - (16cm)²
13cm - r = 12cm
r = 1cm ... (pilihan B)
18.
Dik: Singgung luar
D = 15cm, R = 7,5cm
d = 10cm, r = 5cm
p = 70cm
Dit: j=?
Jawab:
j² = p² - (R - r)²
j² = (70cm)² - (7,5cm - 5cm)²
j ≈ 69cm ... (pilihan A)
19.
Dik: Singgung dalam
j = 10cm, p = 8cm
Dit: p=?
Jawab:
(R + r)² = p² - j²
(R + r)² = (10cm)² - (8cm)²
R + r = 6cm
R = 5cm dan r = 1cm ... (pilihan B)
20.
Dik: Singgung dalam
p = 20cm, j = 16cm, r1 = 10cm
Dit: p=?
Jawab:
(r1 + r2)² = p² - j²
(10cm + r2)² = (20cm)² - (16cm)²
10cm + r2 = 12cm
r2 = 2cm ... (pilihan A)
Kesimpulan Pelajari lebih lanjut-----------------------------
Detil JawabanKelas : VIII/8 (2 SMP)
Mapel : Matematika
Bab : Bab 7 - Lingkaran
Kode : 8.2.7
Kata Kunci : lingkaran, juring, busur, sudut pusat, sudut keliling, persinggungan lingkaran
===
5. jawaban matematika kelas 8 semester 2 kurikulum 2013 halaman 52 uji kompetensi 6 esai no 9
Jawaban matematika kelas 8 semester 2 kurikulum 2013 halaman 52 uji kompetensi 6 esai no 9
Pada soal ini kita masih membahas tentang Teorema Pythagoras
Bunyi Teorema Pythagoras adalah kuadrat sisi miring sama dengan jumlah kuadrat kedua sisi penyikunya
Pembahasan :Gambar dibawah ini merupakan balok ABCD.EFGH dengan panjang 10 dm, lebar 6 dm dan tinggi 4 dm. Titik PQ berturut-turut merupakan titik tengah AB dan FG. Jika seekor laba-laba berjalan dipermukaan balok dari titik P ke titik Q, tentukan jarak terpendek yang mungkin ditempuh oleh laba-laba!
Diketahui :
panjang = 10 dm
lebar = 6 dm
tinggi = 4 dm
Ditanya :
Jarak PQ ?
Dijawab :
Lihat gambar ilustrasi.
Saya tambahkan titik R di tengah garis BC
Pertama-tama kita cari dahulu panjang PR
AB = 10 dm
AP = PB = 5 dm
BC = 6 dm
BR = CR = 3 dm
PR² = PB² + CR²
PR² = 5² + 3
PR² = 25 + 9
PR² = 34
PR = √34 dm
Kemudian kita cari Panjang PQ
QR = tinggi = 4 dm
PQ² = PR² + QR²
PR² = (√34)² + 4²
PR² = 34 + 16
PR² = 50
PR = √50 = 5√2 dm
Jadi jarak terpendek PQ adalah 5√2 dm
Pelajari lebih lanjut :
1. Teorema Pythagoras → https://brainly.co.id/tugas/21108615
2. Balok ABCDEFGH → https://brainly.co.id/tugas/21194696
========================
Detail Jawaban :Kelas : VIII
Mapel : Matematika
Bab : Bab 4 - Teorema Pythagoras
Kode : 8.2.4
Kata kunci : uji kompetensi 6, essay no 9, kelas 8 semester 2, balok, panjang pq
6. Jawaban Matematika kelas 7 semester 2 uji kompetensi 5 halaman 53?
Jawaban Matematika kelas 7 semester 2 uji kompetensi 5 halaman 53 adalah Soal Perbandingan
Pembahasan :1. Terdapat 42 siswa yang mengikuti kelas paduan suara. 31 siswa yang mengikuti kelas paduan suara adalah perempuan. Di antara proporsi berikut yang digunakan untuk menentukan x, yakni persentase siswa laki-laki yang mengikuti kelas paduan suara adalah ....
Diketahui :
Total = 42 siswa
Perempuan = 31 siswa
Persentase siswa laki-laki = x
Ditanya :
Proporsi yang digunakan untuk menentukan x ?
Dijawab :
Jumlah siswa laki-laki yang mengikuti paduan suara = 42 - 31 = 11 orang
Persentase siswa laki-laki (11 orang) = x
Persentase total siswa (42 orang) = 100
Maka perbandingan senilainya adalah :
[tex]\frac{siswa\:laki-laki}{jumlah\:siswa} = \frac{persentase\:laki-laki}{persentase\:total\:siswa}[/tex]
[tex]\frac{11}{42} = \frac{x}{100}[/tex] (D)
2. Rasio waktu yang diluangkan Karina untuk mengerjakan tugas Matematika terhadap tugas IPA adalah 5 banding 4. Jika dia meluangkan 40 menit untuk menyelesaikan tugas Matematika, maka waktu yang dia luangkan untuk menyelesaikan tugas IPA adalah ...
a. 20 menit c. 60 menit
b. 32 menit d. 90 menit
Diketahui :
Rasio Mat : IPA = 5 : 4
Mat = 40 menit
Ditanya :
Waktu untuk menyelesaikan Tugas IPA ?
Dijawab :
Mat : IPA
40 : IPA = 5 : 4
[tex]\frac{40}{IPA} = \frac{5}{4}[/tex]
40 x 4 = 5 x IPA
160 = 5 IPA
IPA = 160 : 5
IPA = 32 menit (B)
3. Sebuah mesin di suatu pabrik minuman mampu memasang tutup botol untuk 14 botol dalam waktu 84 detik. Banyak botol yang dapat ditutup oleh mesin dalam waktu 2 menit adalah ...
a. 16 botol c. 28 cm
b. 20 botol d. 35 cm
Diketahui :
14 botol dalam 84 detik
Ditanya :
Tutup botol yang dapat dipasang dalam waktu 2 menit ?
Dijawab :
2 menit = 2 x 60 = 120 detik
Maka kita gunakan perbandingan senilai :
[tex]\frac{84}{120} = \frac{14}{x}[/tex]
84x = 120 x 14
84x = 1.680
x = 1.680 : 84 = 20 botol (B)
4. Pak Chandra membeli kapal motor. Jika kapal motor yang beliau miliki dikendarai dengan kecepatan 32 km per jam dan menempuh jarak 80 km, kapal motor tersebut membutuhkan 24 liter solar. Pada kecepatan yang sama, solar yang dibutuhkan Pak Chandra untuk menempuh perjalanan sejauh 120 km adalah ... liter.
a. 7 1/2 c. 12
b. 9 d. 20
Diketahui :
v = 32km/jam
s1 = 80km
solar = 24liter
Ditanya :
Solar yang dibutuhkan untuk perjalanan sejauh 120km?
Dijawab :
80km = 24liter
120km = n liter
Maka kita gunakan perbandingan senilai
[tex]\frac{80}{120} = \frac{24}{n}[/tex]
80n = 120 x 24
80n = 2.880
n = 2.880 : 80 = 36 liter (Tidak ada di pilihan ganda)
Pelajari lebih lanjut :
Soal tentang perbandingan senilai :
1. https://brainly.co.id/tugas/21119397
2. https://brainly.co.id/tugas/21169049
==========================
Detail Jawaban :Kelas : VI
Mapel : Matematika
Bab : Bab 9 - Perbandingan senilai dan berbalik nilai
Kode : 6.2.9
Kata Kunci : Uji kompetensi 5, perbandingan
7. jawaban uji kompetensi 6 matematika kelas 8 semester 2 hal 45
Jawaban uji kompetensi 6 matematika kelas 8 semester 2 hal 45
Teorama Pythagoras adalah rumus untuk mencari sisi-sisi pada segitiga siku-siku
Bunyi Teorema Pythagoras adalah Kuadrat sisi miring sama dengan jumlah kuadrat kedua sisi penyikunya
Sisi miring / Hipotenusa biasanya sisi yang terpanjang diantara sisi-sisi lainnya
Pembahasan :1. Diketahui segitiga KLM dengan panjang sisi-sisinya k, l, dan m.
Pernyataan berikut yang benar dari segitiga KLM adalah ....
a. Jika m² = l² + k², besar ∠K = 90°
b. Jika m² = l² − k², besar ∠M = 90°
c. Jika m² = k² − l², besar ∠L = 90°
d. Jika k² = l² + m², besar ∠K = 90° (Benar)
Diketahui :
Segitiga KLM dengan panjang sisi k, l dan m
Ditanya :
Pernyataan yang benar ?
Dijawab :
Lihat gambar ilustrasi
a. Jika m² = l² + k², besar ∠K = 90°
Apabila ∠K = 90° maka sisi miring adalah sisi k
maka menurut Rumus Pythagoras :
k² = l² + m² (Pernyataan salah)
b. Jika m² = l² − k², besar ∠M = 90°
Apabila ∠M = 90° maka sisi miring adalah sisi m
maka menurut Rumus Pythagoras :
m² = k² + l² (Pernyataan salah)
c. Jika m² = k² − l², besar ∠L = 90°
Apabila ∠L = 90° maka sisi miring adalah sisi l
maka menurut Rumus Pythagoras :
l² = k² + m² (Pernyataan salah)
D. Jika k² = l² + m², besar ∠K = 90°
Apabila ∠K = 90° maka sisi miring adalah sisi k
maka menurut Rumus Pythagoras :
k² = l² + m² (Pernyataan benar)
2. Perhatikan gambar berikut. Panjang sisi PQ = ... cm.
a. 10 c. 13
b. 12 d. 14
Diketahui :
PR = 26cm
QR = 24cm
Ditanya :
PQ ?
Dijawab :
PQ² + QR² = PR²
PQ² + 24² = 26²
PQ² + 576 = 676
PQ² = 676 - 576
PQ = √100 = 10 cm (A)
3. Diketahui kelompok tiga bilangan berikut.
(i) 3, 4, 5 (iii) 7, 24, 25
(ii) 5, 13, 14 (iv) 20, 21, 29
Kelompok bilangan di atas yang merupakan tripel Pythagoras adalah ....
a. (i), (ii), dan (iii) c. (ii) dan (iv)
b. (i) dan (iii) d. (i), (ii), (iii), dan (iv)
Diketahui :
kelompok tiga bilangan berikut.
(i) 3, 4, 5 (iii) 7, 24, 25
(ii) 5, 13, 14 (iv) 20, 21, 29
Ditanya :
Kelompok bilangan diatas yang merupakan Triple Pythagoras ?
Dijawab :
(i) 3, 4, 5
sisi miring = 5
5² = 3² + 4²
25 = 9 + 16
25 = 25 (Terbukti)
(ii) 5, 13, 14
Sisi miring = 14
14² = 5² + 13²
196 = 25 + 169
196 ≠ 194 (Tidak terbukti)
(iii) 7, 24, 25
Sisi miring = 25
25² = 7² + 24²
625 = 49 + 576
625 = 625 (Terbukti)
(iv) 20, 21, 29
Sisi miring = 29
29² = 20² + 21²
841 = 400 + 441
841 = 841 (Terbukti)
Jadi yang merupakan triple pythagoras adalah (i), (III) dan (iv) (B)
4. (i) 3 cm, 5 cm, 6 cm (iii) 16 cm, 24 cm, 32 cm
(ii) 5 cm, 12 cm, 13 cm (iv) 20 cm, 30 cm, 34 cm
Ukuran sisi yang membentuk segitiga lancip ditunjukkan oleh ....
a. (i) dan (ii) c. (ii) dan (iii)
b. (i) dan (iii) d. (iii) dan (iv)
Diketahui :
(i) 3 cm, 5 cm, 6 cm (iii) 16 cm, 24 cm, 32 cm
(ii) 5 cm, 12 cm, 13 cm (iv) 20 cm, 30 cm, 34 cm
Ditanya :
Ukuran sisi yang merupakan segitiga lancip adalah ?
Dijawab :
Persamaan sisi segitiga :
c = sisi miring
c² > a² + b² (Segitiga tumpul)
c² = a² + b² (Segitiga siku-siku)
c² < a² + b² (Segitiga lancip)
(i). 3 cm , 5 cm, 6 cm
c = 6cm
6² > 3² + 5²
36 > 9 + 25
36 > 34
segitiga tumpul, karena c² > a² + b²
(ii). 5 cm , 12 cm, 13 cm
c = 13cm
13² = 5² + 12²
169 = 25 + 144
169 = 169
Segitiga siku-siku, karena c² = a² + b²
(iii). 16 cm , 24 cm, 32 cm
c = 32cm
32² > 16² + 24²
1024 > 256 + 576
1024 > 832
Segitiga tumpul, karena c² > a² + b²
(iv). 20 cm , 30 cm, 34 cm
c = 34cm
34² < 20² + 30²
1156 < 400 + 900
1156 < 1300
Segitiga lancip, karena c² < a² + b²
Yang merupakan segitiga lancip adalah (iv) (Tidak ada jawaban)
Pelajari lebih lanjut :
Soal tentang Teorema Pythagoras :
1. brainly.co.id/tugas/21164772
2. brainly.co.id/tugas/21043142
3. brainly.co.id/tugas/21094843
==========================
Detail Jawaban :Kelas : VIII
Mapel : Matematika
Bab : Bab 4 - Teorema Pythagoras
Kode : 8.2.4
Kata kunci : Uji kompetensi 6, kelas 8 semester 2, hal 45, teori Pythagoras
8. Jawaban uji kompetensi 7 matematika kelas 8 semester 2 kurtilas
Jawaban Uji Kompetensi 7 Matematika Kelas 8 Semester 2 PGJawaban Pendahuluan
Soal matematika di atas merupakan materi dari lingkaran.
PembahasanLingkaran adalah suatu geometri bidang atau bangun datar dimana terdapat kumpulan titik-titik yang mempunyai jarak yang bernilai sama atau tetap terhadap titik tunggal yang bersifat semu, sehingga titik-titik tersebut membentuk garis tertutup berupa lengkungan dalam satu putaran penuh secara berulang-ulang.
Pada suatu bidang lingkaran, terdapat jari-jari lingkaran (r) dan diameter lingkaran (d), sehingga bentuk persamaannya yaitu r = d/2 atau d = 2r. Rumus umum lingkaran adalah dengan menggunakan nilai konstanta pi/phi yang dinotasikan dalam π yang mempunyai nilai bilangan riil yang mendekati bilangan pecahan 22/7 dan bilangan desimal 3,14 sehingga ditulis menjadi π ≈ 22/7 ≈ 3,14.
Rumus menghitung keliling lingkaran
K = π ⋅ 2r
K = π ⋅ d
K busur = π ⋅ 2r ⋅ (m∠ / 360° )
K busur = π ⋅ d ⋅ (m∠ / 360° )
Rumus menghitung luas lingkaran
L = π ⋅ r ⋅ r = π ⋅ r²
L = π ⋅ d/2 ⋅ d/2 = π ⋅ d²/4
L juring = π ⋅ r² ⋅ (m∠ / 360° )
L juring = π ⋅ d²/4 ⋅ (m∠ / 360° )
Rumus untuk menghitung garis singgung persekutuan dua lingkaran adalah dengan menggunakan teorema Pythagoras, dimana j adalah garis singgung luar atau dalam lingkaran, p adalah jarak antara kedua titik pusat lingkaran, dan R dan r sebagai jari-jari lingkaran besar dan kecil.
Rumus garis singgung luar lingkaran
j² = p² - (R - r)²
Rumus garis singgung dalam lingkaran
j² = p² - (R + r)²
1.
Dik: Juring @ m∠ pusat = 90°, L = 78,5cm² (π = 3,14)
Dit: r=?
Jawab:
L juring = π ⋅ r² ⋅ (m∠ / 360° )
78,5cm² = 3,14 ⋅ r² ⋅ (90° / 360° )
100cm² = r²
r = 10cm ... (pilihan A)
2.
Dik: Busur @ K = 22cm, m∠ pusat = 120° (π = 22/7)
Dit: r=?
Jawab:
K busur = π ⋅ 2r ⋅ (m∠ / 360° )
22cm = 22/7 ⋅ 2r ⋅ (120° / 360° )
r = 10,5cm ... (pilihan tidak ada)
3.
Dik: Busur @ K = 16,5cm, d = 42cm (π = 22/7)
Dit: m∠ pusat=?
Jawab:
K busur = π ⋅ d ⋅ (m∠ / 360° )
16,5cm = 22/7 ⋅ 42cm ⋅ (m∠ / 360° )
m∠ = 45° ... (pilihan A)
4.
Dik: Juring @ L = 57,75cm², m∠ pusat = 60° (π = 22/7)
Dit: d=?
Jawab:
L juring = π ⋅ r² ⋅ (m∠ / 360° )
57,75cm² = 22/7 ⋅ r² ⋅ (60° / 360° )
110,25cm² = r²
r = 10,5cm ... (pilihan B)
5.
Dik: Busur @ r = 21cm, m∠ pusat = 30° (π = 22/7)
Dit: K=?
Jawab:
K busur = π ⋅ 2r ⋅ (m∠ / 360° )
K busur = 22/7 ⋅ 2(21cm) ⋅ (30° / 360° )
K busur = 11cm ... (pilihan A)
6.
Dik: Lingkaran O
Dit: m∠BAD=?
Jawab:
2 ⋅ Sudut keliling = Sudut pusat
2 ⋅ m∠BAD = 110°
m∠BAD = 55° ... (pilihan A)
7.
Dik: Lingkaran O
Dit: m∠AOB=?
Jawab:
m∠APB + m∠AQB + m∠ARB = 144°
3 ⋅ Sudut keliling = 144°
Sudut keliling = 48°
2 ⋅ Sudut keliling = Sudut pusat
2 ⋅ 48° = m∠AOB
m∠AOB = 96° ... (pilihan tidak ada)
8.
Dik: Lingkaran @ d = 0,6m
Jarak = 10000km = 10000000m
Dit: Putaran=?
Jawab:
K lingkaran * putaran = jarak
π ⋅ d * n = 10000000m
3,14 ⋅ 0,6m * n = 10000000m
n ≈ 5000000 ... (pilihan D)
9.
Dik: Persegi @ s = 26cm
2 buah 1/4 lingkaran @ r = 14cm
Dit: K arsir=?
Jawab:
K = K persegi + K lingkaran
K = 4s + 2 ⋅ 1/4 ⋅ π ⋅ 2r
K = 4(26cm) + 1/2 ⋅ 22/7 ⋅ 2(14cm)
K = 158cm ... (pilihan C)
10.
Dik: Persegi @ s = 14cm
1/2 lingkaran @ d = 14cm, r = 7cm
Dit: L arsir=?
Jawab:
L = L persegi + L lingkaran
L = s² + 1/2 ⋅ π ⋅ r²
L = (14cm)² + 1/2 ⋅ 22/7 ⋅ (7cm)²
L = 273cm² ... (pilihan C)
11.
Dik: Singgung luar
j = 12cm, rC = 7,5cm, rD = 4cm
Dit: p=?
Jawab:
p² = j² + (rC - rD)²
p² = (12cm)² + (7,5cm - 4cm)²
p = √156,25 cm²
p = 12,5cm ... (pilihan A)
12.
Dik: Singgung dalam
p = 7,5cm, rA = 2,5cm, rB = 2cm
Dit: j=?
Jawab:
j² = p² - (rA + rB)²
j² = (7,5cm)² - (2,5cm + 2cm)²
j = √36 cm²
j = 6cm ... (pilihan C)
13.
Dik: Singgung luar
R = 1,5cm, p = 2,5cm, j = 2,4cm
Dit: j=?
Jawab:
(R - r)² = p² - j²
(1,5cm - r)² = (2,5cm)² - (2,4cm)²
(1,5cm - r) ² = 0,49cm²
1,5cm - r = 0,7cm
r = 0,8cm ... (pilihan B)
14.
Dik: Singgung luar
R = 19cm, r = 10cm, j = 40cm
Dit: p=?
Jawab:
p² = j² + (R - r)²
p² = (40cm)² + (19cm - 10cm)²
p = √1681cm²
p = 41cm ... (pilihan A)
15.
Dik: Singgung luar
p = 17cm, j = 15cm
Dit: p=?
Jawab:
(R - r)² = p² - j²
(R - r)² = (17cm)² - (15cm)²
R - r = 8cm
R = 10cm dan r = 2cm ... (pilihan D)
16.
Dik: Singgung luar
p = 15cm, j = 12cm
Dit: p=?
Jawab:
(R - r)² = p² - j²
(R - r)² = (15cm)² - (12cm)²
R - r = 9cm
R = 12cm dan r = 3cm ... (pilihan B)
17.
Dik: Singgung luar
r1 = 13cm, p = 20cm, j = 16cm
Dit: r2=?
Jawab:
(R - r)² = p² - j²
(R - r)² = (20cm)² - (16cm)²
13cm - r = 12cm
r = 1cm ... (pilihan B)
18.
Dik: Singgung luar
D = 15cm, R = 7,5cm
d = 10cm, r = 5cm
p = 70cm
Dit: j=?
Jawab:
j² = p² - (R - r)²
j² = (70cm)² - (7,5cm - 5cm)²
j ≈ 69cm ... (pilihan A)
19.
Dik: Singgung dalam
j = 10cm, p = 8cm
Dit: p=?
Jawab:
(R + r)² = p² - j²
(R + r)² = (10cm)² - (8cm)²
R + r = 6cm
R = 5cm dan r = 1cm ... (pilihan B)
20.
Dik: Singgung dalam
p = 20cm, j = 16cm, r1 = 10cm
Dit: p=?
Jawab:
(r1 + r2)² = p² - j²
(10cm + r2)² = (20cm)² - (16cm)²
10cm + r2 = 12cm
r2 = 2cm ... (pilihan A)
Kesimpulan Pelajari lebih lanjut-----------------------------
Detil JawabanKelas : VIII/8 (2 SMP)
Mapel : Matematika
Bab : Bab 7 - Lingkaran
Kode : 8.2.7
Kata Kunci : lingkaran, juring, busur, sudut pusat, sudut keliling, persinggungan lingkaran
===
9. Jawaban uji kompetensi bahasa inggris halaman 59 kelas 8 semester 2
Jawaban:
1.Taller
Penjelasan:
kalo gak salah ya
10. jawaban matematika kelas 7 semester 2 uji kompetensi 6 halaman 94
Jawaban matematika kelas 7 semester 2 uji kompetensi 6 halaman 94
Saya akan menjawab soal ini dari nomor 1 - 8
Rumus :
Untung / rugi = Pendapatan - Modal
Untung / rugi = [tex]\frac{persentase\:untung\:atau\:rugi}{100}[/tex] x Modal
Kondisi untung apabila pendapatan lebih besar dari modal
Kondisi rugi apabila pendapatan lebih kecil dari modal (negatif)
Pembahasan :1. Tentukan kondisi berikut yang manakah yang menunjukkan kondisi rugi
Pemasukkan Pengeluaran
(Rp) (Rp)
a. 700.000 900.000
b. 1.100.000 1.100.000
c. 2.100.000 2.000.000
d. 1.650.000 1.550.000
Untuk menjawab soal ini, maka kita harus tahu dahulu kalau keadaan yang menunjukkan kondisi rugi adalah keadaan dimana pemasukkan lebih kecil daripada pengeluaran
a. Pemasukkan = 700.000
Pengeluaran = 900.000
Kondisi ini adalah kondisi rugi, karena pengeluaran lebih besar daripada pemasukkan
Rugi = 900.000 - 700.000 = 200.000
b. Pemasukkan = 1.100.000
Pengeluaran = 1.100.000
Apabila kondisi pemasukkan = pengeluaran maka kondisi ini dinamakan kondisi impas
c. Pemasukkan = 2.100.000
Pengeluaran = 2.000.000
Pada kondisi ini pemasukkan lebih besar daripada pengeluaran, maka disebut kondisi untung
Untung = 2.100.000 - 2.000.000 = 100.000
d. Pemasukkan = 1.650.000
Pengeluaran = 1.550.000
Kondisi ini dinamakan kondisi untung, karena pemasukkan lebih besar daripada pengeluaran
Untung = 1.650.000 - 1.550.000 = 100.000
2. Seorang pedagang mengeluarkan Rp 1.500.000 untuk menjalankan usahanya. Jika pada hari itu dia mendapatkan keuntungan sebesar 10%. Maka besarnya pendapatan yang didapatkan pada hari itu adalah...
a. Rp 1.650.000 c. Rp 1.400.000
b. Rp 1.600.000 d. Rp 1.350.000
Diketahui :
Modal Rp 1.500.000
Untung = 10%
Ditanya :
Pendapatan ?
Dijawab :
Untung = [tex]\frac{10}{100}[/tex] x Rp 1.500.000 = Rp 150.000
Pendapatan = Rp 1.500.000 + Rp 150.000 = Rp 1.650.000 (A)
3. Pak Dedi membeli suatu sepeda motor bekas dengan harga Rp 5.000.000. Dalam waktu 1 minggu motor tersebut dijual kembali dengan harga 110% dari harga belinya. Tentukan keuntungan Pak Dedi?
a. Rp 500.000 c. Rp 4.500.000
b. Rp 1.000.000 d. Rp 5.500.000
Diketahui :
Modal Rp 5.000.000
Dijual kembali 110% dari harga beli
Ditanya :
Keuntungan Pak Dedi ?
Dijawab :
Harga jual = [tex]\frac{110}{100}[/tex] x Rp 5.000.000 = Rp 5.500.000
Karena harga jual lebih tinggi dari harga beli, maka kondisinya adalah untung
Keuntungan Pak Dedi = Rp 5.500.000 - Rp 5.000.000 = Rp 500.000 (A)
4. Pak Candra membeli suatu sepeda bekas dengan harga Rp 500.000. Dalam waktu 1 minggu sepeda tersebut dijual kembali dengan harga 110% dari harga beli. Tentukan keuntungan Pak Candra?
a. Rp 550.000 c. Rp 50.000
b. Rp 100.000 d. Rp 25.000
Diketahui :
Modal Rp 500.000
Harga jual 110% dari harga beli
Ditanya :
Keuntungan Pak Candra ?
Dijawab :
Harga jual = [tex]\frac{110}{100}[/tex] x Rp 500.000 = Rp 550.000
Karena harga jual lebih tinggi dari harga beli, maka kondisinya adalah untung
Keuntungan Pak Candra = Rp 550.000 - Rp 500.000 = Rp 50.000 (C)
5. Pak Edi membeli mobil dengan harga Rp 160.000.000. Setelah 6 bulan dipakai Pak Edi menjual mobil tersebut dengan harga Rp 140.000.000. Tentukan taksiran terdekat persentase kerugian yang ditanggung Pak Edi?
a. 20% c. 15%
b. 18% d. 12%
Diketahui :
Harga beli = Rp 160.000.000
Harga jual = Rp 140.000.000
Ditanya :
Taksiran persentase kerugian Pak Edi ?
Dijawab :
Karena harga beli lebih tinggi daripada harga jual, maka kondisi ini adalah kondisi rugi. Pertama-tama kita cari dahulu kerugian yang dialami
Rugi = Rp 160.000.000 - Rp 140.000.000 = Rp 20.000.000
Persentase kerugian = [tex]\frac{20.000.000}{160.000.000}[/tex] x 100% = 12,5%
Taksiran terdekat adalah 12% (D)
6. Pak Fandi membeli sepetak tanah dengan harga Rp 40.000.000 1 tahun kemudian, Pak Dedi menjual tanah tersebut dengan keuntungan 16%. Tentukan taksiran terdekat harga jual tanah milik Pak Fandi?
a. Rp 6.400.000 c. Rp 46.400.000
b. Rp 33.600.000 d. Rp 56.000.000
Diketahui :
Harga beli = Rp 40.000.000
untung = 16%
Ditanya :
Taksiran terdekat harga jual ?
Dijawab :
untung = [tex]\frac{16}{100}[/tex] x Rp 40.000.000 = Rp 6.400.000
Harga jual tanah = Rp 40.000.000 + Rp 6.400.000 = Rp 46.400.000 (C)
Pelajari lebih lanjut :Soal-soal tentang Aritmatika sosial :
1. brainly.co.id/tugas/21432898
2. brainly.co.id/tugas/21335926
======================
Detail Jawaban :Kelas : VII
Mapel : Matematika
Bab : Bab 7 - Aritmatika sosial
Kode : 7.2.7
Kata Kunci : untung, rugi, uji kompetensi 6, kelas 7 semester 2
11. kunci jawaban matematika kelas 8 semester 2 halaman 45 paket uji kompetensi 6 (5-20)
Kunci jawaban matematika kelas 8 semester 2 halaman 45 paket uji kompetensi 6 (5 – 20). Soal yang disajikan adalah soal tentang teorema pytagoras. Disini saya akan menjawab nomor 8 sampai 19, untuk
nomor 5, 6, 7 dan 20 dapat dilihat di link pelajari lebih lanjut
Pembahasan8. Yang membentuk segitiga siku-siku adalah A. 10 cm, 24 cm, 26 cm, karena
10² + 24² = 26²
100 + 576 = 676
676 = 676
9. Panjang sisi tegak yang lain adalah
= [tex]\sqrt{17^{2} - 15^{2}}[/tex]
= [tex]\sqrt{289 - 225}[/tex]
= [tex]\sqrt{64}[/tex]
= 8 cm (B)
10. Alas segitiga
= [tex]\sqrt{25^{2} - 24^{2}}[/tex]
= [tex]\sqrt{625 - 576}[/tex]
= [tex]\sqrt{49}[/tex]
= 7 cm
Keliling segitiga
= (25 + 24 + 7) cm
= 56 cm (B)
11. (4a)² + (3a)² = 70²
16a² + 9a² = 4.900
25a² = 4.900
a² = 196
a = [tex]\sqrt{196}[/tex]
a = 14
Keliling segitiga
= (4a + 3a + 70) cm
= (7a + 70) cm
= (7(14) + 70) cm
= (98 + 70) cm
= 168 cm (C)
12. Jarak kapal dari titik awal ke titik akhir
= [tex]\sqrt{11^{2} + 9^{2}}[/tex]
= [tex]\sqrt{121 + 81}[/tex]
= [tex]\sqrt{202}[/tex] km (C)
13. Tinggi trapesium
= [tex]\sqrt{13^{2} - 5^{2}}[/tex]
= [tex]\sqrt{169 - 25}[/tex]
= [tex]\sqrt{144}[/tex]
= 12 inci
Sisi sejajar trapesium adalah
a = 18 inci b = (18 + 5 + 5) inci = 28 inciJadi luas trapesium tersebut adalah
= ½ × (a + b) × t
= ½ × (18 + 28) × 12
= ½ × 46 × 12
= 276 inci² (C)
14. Panjang KM
= [tex]\sqrt{KL^{2} + LM^{2}}[/tex]
= [tex]\sqrt{13^{2} + 13^{2}}[/tex]
= [tex]\sqrt{169 + 169}[/tex]
= [tex]\sqrt{338}[/tex]
= [tex]\sqrt{169 \times 2}[/tex]
= [tex]13\sqrt{2}[/tex] cm (B)
15. Perhatikan segitiga siku-siku sebelah kanan, jika t adalah tinggi segitiga, maka
t² + 15² = 17²
t² + 225 = 289
t² = 289 – 225
t² = 64
Perhatikan segitiga siku-siku sebelah kiri
(3x – 5)² = 6² + t²
(3x – 5)² = 36 + 64
(3x – 5)² = 100
(3x – 5)² = 10²
3x – 5 = 10
3x = 15
x = 5 (A)
16. Panjang diagonal sisi depan balok
= [tex]\sqrt{p^{2} + t^{2}}[/tex]
= [tex]\sqrt{40^{2} + 30^{2}}[/tex]
= [tex]\sqrt{1600 + 900}[/tex]
= [tex]\sqrt{2500}[/tex]
= 50 cm
Luas daerah yang diarsir
= d × l
= 50 cm × 10 cm
= 5 dm × 1 dm
= 5 dm² (A)
17. OE = ½ AB = ½ (14 cm) = 7 cm
Panjang TE
= [tex]\sqrt{TO^{2} + OE^{2}}[/tex]
= [tex]\sqrt{24^{2} + 7^{2}}[/tex]
= [tex]\sqrt{576 + 49}[/tex]
= [tex]\sqrt{625}[/tex]
= 25 cm (A)
18. AB = BC, maka
AB² + BC² = AC²
AB² + AB² = 24²
2AB² = 576
AB² = 288
AB = [tex]\sqrt{288}[/tex]
AB = [tex]\sqrt{144 \times 2}[/tex]
AB = [tex]12\sqrt{2}[/tex] cm (B)
19. Perhatikan ∆PQS
SQ : PS : PQ = 1 : √3 : 2 = a : a√3 : 2a
SQ = a dan PS = a√3Karena SQ = 3 ⇒ a = 3, maka
PS = a√3 = 3√3
Perhatikan ∆QSR
SR : SQ : RQ = 1 : √3 : 2 = x : x√3 : 2x
SQ = x√3 dan SR = xKarena SQ = 3 maka
x√3 = 3 ===> kedua ruas kali √3
x√3 . √3 = 3 .√3
3x = 3√3
x = √3
SR = √3
Jadi panjang PR adalah
= PS + SR
= 3√3 + √3
= 4√3 cm (C)
Pelajari lebih lanjutContoh soal lain tentang teorema pythagoras
Jawaban no 5 sampai no 7: https://brainly.co.id/tugas/26539412 Jawaban no 20: https://brainly.co.id/tugas/13971522 Menentukan panjang sisi segitiga siku-siku: https://brainly.co.id/tugas/259167------------------------------------------------
Detil JawabanKelas : 8
Mapel : Matematika
Kategori : Teorema Pythagoras
Kode : 8.2.4
12. Uji kompetensi 7 matematika kelas 8 semester 2
1. Jari - jari lingkarannya adalah 10 cm
2. Jari - jari lingkarannya adalah 10,5 cm
3. Sudut pusatnya adalah 45°
4. Jari - jari lingkarannya adalah 10,5 cm
Lingkaran adalah himpunan semua titik di bidang datar yang berjarak sama dari suatu titik tetap di bidang tersebut.
Juring lingkaran adalah potongan atau bagian dari luas lingkaran jadi juring adalah luasan yang dibatasi busur dengan dua buah jari - jari. Juring adalah potongan dari luas lingkaran.
Busur lingkaran adalah garis berbentuk lengkung pada tepian lingkaran. Busur adalah potongan dari keliling lingkaran.
PEMBAHASAN :
1. Diketahui suatu juring lingkaran dengan ukuran sudut pusat 90°. Jika luas juring tersebut adalah 78,5 cm², maka sebelum kita menentukan panjang jari - jari lingkaran tersebut, kita akan menghitung luas lingkaran penuhnya karena luas juring adalah seperbagian dari luas lingkaran.
Sudut pusat juring = 90°. Dan sudut lingkaran penuh adalah 360°. Sehingga untuk mengubah luas juring ke luas lingkaran penuh, luas juring tersebut harus dikali :
360° ÷ 90° = 4 karena 90° adalah ¼ dari 360°.
Maka, luas lingkaran penuhnya adalah : 4 × luas juring
= 4 × 78,5 cm²
= 314 cm²
Sedangkan luas lingkaran dihitung dengan : π × r².
Jadi, luas lingkaran = π × r²
314 = 3,14 × r²
r² = 314 ÷ 3,14
r² = 100
r = √100
r = jari - jari lingkarannya = 10 cm
2. Diketahui panjang busur suatu lingkaran adalah 22 cm. Jika sudut pusat yang menghadap busur tersebut berukuran 120°, maka sebelum menghitung jari - jari lingkarannya, kita akan menghitung lingkaran penuhnya karena panjang busur merupakan seperbagian dari keliling lingkaran.
Sudut pusat yang menghadap busur = 120°. Sedangkan sudut lingkaran penuh = 360°. Maka, untuk mengetahui keliling lingkaran penuhnya, kita harus mengalikan panjang busur tersebut sebanyak :
360° ÷ 120° = 3 kali karena 120° adalah ⅓ dari sudut lingkaran penuh. Sehingga keliling lingkaran penuhnya adalah :
3 × 22 cm = 66 cm. Sedangkan keliling lingkaran dihitung dengan rumus : 2 × π × r.
Jadi, keliling lingkaran = 2 × π × r
66 cm = 2 × 22/7 × r.
r = 66 ÷ 44/7
r = (66 × 7) ÷ 44
r = jari - jari lingkarannya = 10,5 cm
3. Diketahui panjang busur suatu lingkaran adalah 16,5 cm. Jika panjang diameter lingkaran tersebut adalah 42 cm, maka sebelum kita menentukan sudut pusat yang menghadap busur tersebut, terlebih dahulu kita hitung keliling lingkaran penuhnya.
Keliling lingkaran = π × d
= 22/7 × 42
= 132 cm.
Sudut pusat yang menghadap ke suatu busur dapat dihitung dengan membandingkan panjang busur dan keliling lingkaran kemudian dikali 360°. Sehingga,
16,5 / 132 × 360°
= 45°
4. Diketahui suatu juring lingkaran memiliki luas 57,75 cm². Jika besar sudut pusat yang bersesuaian dengan juring tersebut adalah 60°, maka sebelum kita menghitung jari - jari lingkarannya, kita akan hitung luas lingkaran penuhnya terlebih dahulu.
Sudut yang bersesuaian dengan juring = 60°, sedangkan sudut lingkaran penuh = 360°. Maka, luas lingkaran penuhnya adalah hasil dari luas juring dikali :
360° ÷ 60° = 6, karena 60° adalah 1/6 dari 360°.
Luas lingkaran penuh = 6 × 57,75 cm²
= 346,5 cm².
Sedangkan, luas lingkaran dihitung dengan : π × r².
Jadi, luas lingkaran = π × r²
346,5 cm² = 22/7 × r²
r² = 346,5 ÷ 22/7
r² = 346,5 × 7/22
r² = 110,25
r = √110,25
r = 10,5 cm
Pelajari lebih lanjut :
Tentang menghitung jari - jari dari luas juring
https://brainly.co.id/tugas/14818153
https://brainly.co.id/tugas/14833557
Tentang menghitung jari - jari dari panjang busur
https://brainly.co.id/tugas/15170404
https://brainly.co.id/tugas/14279733
Tentang menentukan sudut pusat juring
https://brainly.co.id/tugas/14633331
https://brainly.co.id/tugas/14829909
DETAIL JAWABAN
MAPEL : MATEMATIKA
KELAS : VIII
MATERI : LINGKARAN
KATA KUNCI : JURING LINGKARAN, PANJANG. USUR, KELILING LINGKARAN, LUAS LINGKARAN, JARI - JARI LINGKARAN, SUDUT PUSAT JURING, SUDUT LINGKARAN PENUH
KODE SOAL : 2
KODE KATEGORISASI : 8.2.7
13. jawaban uji kompetensi 9 matematika kelas 8 semester 2 hal 263
Oke jawaban untuk soal uji kompetensi 9 matematika kelas 8 semester 2 revisi 2017 halaman 263 adalah yang kakak lampirkan di gambar di bawah ya! Tapi kakak kerjain yang pilihan gandanya aja, semangat adik-adik semua!
PembahasanHalo teman-teman! Balik lagi di Brainly!! Masih semangat untuk belajar kan! Kali ini kita akan membahas materi mengenai statistika tetapi kali ini kakak kasih penjelasan singkatnya tentang mean atau rata-rata dan median ya. Salah satu hal yang paling penting dalam menggambarkan distribusi dari suatu data adalah melalui nilai pusat data pengamatan (Central Tendency). Untuk setiap pengukuran aritmatika yang ditujukan untuk menggambarkan suatu nilai yang mewakili nilai pusat atau nilai sentral dari suatu gugus data (himpunan pengamatan) dikenal sebagai ukuran pemusatan data atau tendensi sentral. Terdapat tiga ukuran pemusatan data yang sering digunakan, yaitu: mean atau rata-rata hitung / rata-rata aritmatika, median, dan modus. Kemudian rata-rata hitung atau rata-rata aritmatika atau sering disebut dengan istilah mean saja dihitung dengan menjumlahkan semua nilai data pengamatan kemudian dibagi dengan banyaknya data. Nah kalau median itu artinya nilai dari data tengah, dan modus sendiri adalah nilai yang paling sering muncul. Oke! Langsung aja yuk kita lihat penjelasan dari jawaban soal di atas yang sudah kakak lampirkan di bawah ya! Semangat! Semoga membantu adik-adik semua!
Pelajari Lebih LanjutAdik-adik semua masih kepingin belajar dan memperdalam materi di atas? Yuk cek aja link-link yang ada di bawah ini ya! Semangat!
Contoh soal mencari simpangan kuartil : https://brainly.co.id/tugas/1203389 Contoh soal mencari jangkauan data mula-mula : https://brainly.co.id/tugas/15027349 Contoh soal mencari nilai rata-rata yang tidak mungkin : https://brainly.co.id/tugas/15064512 Detail JawabanKelas : 7 SMP
Mapel : Matematika
Bab : 9 - Statistika
Kode : 7.2.2009
Kata Kunci : Rata-Rata, Mean, Median, Data Tengah, Kuartil Bawah, Kuartil Atas, Statistika, Modus.
14. jawaban matematika uji kompetensi 6 kelas 8 semester 2 hal 46
Jawaban matematika uji kompetensi 6 kelas 8 semester 2 hal 46. Soal yang disajikan untuk halaman 46 adalah soal nomor 5, 6 dan 7, yaitu tentang jarak antara dua titik. Rumus jarak antara titik (x₁, y₁) dan (x₂, y₂) adalah [tex]\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}[/tex].
Pada segitiga siku-siku dengan sisi miringnya (sisi terpanjang) adalah c dan dua sisi lainnya adalah a dan b, maka berlaku rumus:
c² = a² + b² Pembahasan5. Diketahui
Layang-layang KLMN dengan koordinat
K(–5 , 0) L(0, 12) M(16, 0) N(0, –12)Ditanyakan
Keliling layang-layang KLMN
Jawaban
Layang-layang memiliki 2 pasang sisi yang sama panjang, sehingga kelilingnya adalah
K = 2(a + b)Panjang sisi KL
= [tex]\sqrt{(x_{L} - x_{K})^{2} + (y_{L} - y_{K})^{2}}[/tex]
= [tex]\sqrt{(0 - (-5))^{2} + (12 - 0)^{2}}[/tex]
= [tex]\sqrt{5^{2} + 12^{2}}[/tex]
= [tex]\sqrt{25 + 144}[/tex]
= [tex]\sqrt{169}[/tex]
= 13
Panjang sisi LM
= [tex]\sqrt{(x_{M} - x_{L})^{2} + (y_{M} - y_{L})^{2}}[/tex]
= [tex]\sqrt{(16 - 0)^{2} + (0 - 12)^{2}}[/tex]
= [tex]\sqrt{16^{2} + (-12)^{2}}[/tex]
= [tex]\sqrt{256 + 144}[/tex]
= [tex]\sqrt{400}[/tex]
= 20
Jadi keliling layang-layang KLMN adalah
= 2(KL + LM)
= 2(13 + 20) satuan
= 2(33) satuan
= 66 satuan
Jawaban C
6. Diketahui
Panjang sisi siku-siku pada segitiga siku-siku PQR adalah
4 dm 6 dmDitanyakan
Panjang hipotenusanya = …. ?
Jawab
Panjang hipotenusa (sisi miringnya) adalah
= [tex]\sqrt{4^{2} + 6^{2}}[/tex] dm
= [tex]\sqrt{16 + 36}[/tex] dm
= [tex]\sqrt{52}[/tex] dm
= [tex]\sqrt{4 \times 13}[/tex] dm
= [tex]2\sqrt{13}[/tex] dm
Jawaban C
7. Bangunan yang berjarak √40 adalah:
A. Taman Kota (–6, 0) dan Stadion (–2, 3), berjarak:
= [tex]\sqrt{(-2 - (-6))^{2} + (3 - 0)^{2}}[/tex]
= [tex]\sqrt{4^{2} + 3^{2}}[/tex]
= [tex]\sqrt{16 + 9}[/tex]
= [tex]\sqrt{25}[/tex]
= 5
B. Pusat Kota (0, 0) dan Museum (6, 1), berjarak
= [tex]\sqrt{(6 - 0)^{2} + (1 - 0)^{2}}[/tex]
= [tex]\sqrt{6^{2} + 1^{2}}[/tex]
= [tex]\sqrt{36 + 1}[/tex]
= [tex]\sqrt{37}[/tex]
C. Rumah sakit (–6, –4) dan Museum (6, 1), berjarak
= [tex]\sqrt{(6 - (-6))^{2} + (1 - (-4))^{2}}[/tex]
= [tex]\sqrt{12^{2} + 5^{2}}[/tex]
= [tex]\sqrt{144 + 25}[/tex]
= [tex]\sqrt{169}[/tex]
= 13
D. Penampungan hewan (6, –2) dan Kantor polisi (0, –4), berjarak
= [tex]\sqrt{(0 - 6)^{2} + (-4 - (-2))^{2}}[/tex]
= [tex]\sqrt{(-6)^{2} + (-2)^{2}}[/tex]
= [tex]\sqrt{36 + 4}[/tex]
= [tex]\sqrt{40}[/tex]
Jadi bangunan yang berjarak √40 adalah Penampungan hewan dan Kantor polisi
(Jawaban D)
Pelajari lebih lanjutContoh soal lain tentang teorema pythagoras
Hubungan sisi pada segitiga siku-siku: https://brainly.co.id/tugas/14660375 Jarak antara dua kapal: https://brainly.co.id/tugas/15504720 Menentukan panjang sisi segitiga siku-siku: https://brainly.co.id/tugas/259167------------------------------------------------
Detil JawabanKelas : 8
Mapel : Matematika
Kategori : Teorema Pythagoras
Kode : 8.2.4
15. jawaban matematika kelas 7 semester 2 uji kompetensi 5 halaman 54
Jawaban:
1. Terdapat 42 siswa yang mengikuti kelas paduan suara. 31 siswa yang mengikuti kelas paduan suara adalah perempuan. Di antara proporsi berikut yang digunakan untuk menentukan x, yakni persentase siswa laki-laki yang mengikuti kelas paduan suara adalah….
Jawaban: D
x = 42 – 31/42 x 100
x = 11/42 x 100
x/100 = 11/42 atau 11/42 = x/100
2.Rasio waktu yang diluangkan Karina untuk mengerjakan tugas Matematika terhadap tugas IPA adalah 5 banding 4. Jika dia meluangkan 40 menit untuk menyelesaikan tugas Matematika, maka waktu yang dia luangkan untuk menyelesaikan tugas IPA adalah….
Jawaban: B
IPA = 4/5 x 40 menit
= 4 x 8 menit = 32 menit
3.Sebuah mesin di suatu pabrik minuman mampu memasang tutup botol untuk 14 botol dalam waktu 84 detik. Banyak botol yang dapat ditutup oleh mesin dalam waktu 2 menit adalah….
Jawaban: B
Botol = 2 menit/84 detik x 14 botol
= 120 detik/84 detik x 14 botol
= 120/6 botol
= 20 botol
4.Pak Chandra membeli kapal motor. Jika kapal motor yang beliau miliki dikendarai dengan kecepatan 32 km per jam dan menempuh jarak 80 km, kapal motor tersebut membutuhkan 24 liter solar. Pada kecepatan yang sama, solar yang dibutuhkan Pak Chandra untuk menempuh perjalanan sejauh 120 km adalah .... liter
Jawaban: -
Solar = 120/80 x 24 liter
= 1,5 x 24 liter
= 36 liter
5.Pak Hendra digaji Rp360.000,00 selama 3 jam untuk memberikan pelatihan di tempat kursus. Waktu yang Pak Hendra gunakan untuk pelatihan jika beliau mendapatkan gaji Rp7.200.000,00 adalah….
Jawaban: C
Waktu = 7.200.000/360.000 x 3 jam
= 20 x 3 jam
= 60 jam
6.Suatu pekerjaan dapat diselesaikan selama 16 hari oleh 7 orang. Jika 3 pekerja ditugaskan ke pekerjaan lain, lama waktu yang bisa diselesaikan oleh pekerja yang tersisa adalah….
Jawaban: A
Waktu = 7/4 x 16 hari
= 7 x 4 hari
= 28 hari
7. 5 ons meises cokelat dijual seharga Rp10.000,00. Di antara grafik berikut yang menunjukkan hubungan antara berat dan harga meises cokelat yang dijual adalah….
Jawaban: D
8. (Soal selengkapnya lihat di buku) Penggunaan BBM yang dibutuhkan mobil Pak Bambang dari Medan sampai Padang adalah….
Jawaban: -
BBM = 358 + 370/20 liter
= 728/20 liter
= 36,4 liter
9.Jamila adalah seorang perancang busana muda. Dia ingin membuka toko yang khusus menjual baju rancangannya di sebuah ruko. Dia menggambar rancangan toko seperti berikut.
Skala 1/2 in = 3 meter. Lebar toko pada gambar adalah 2 in. Lebar toko sebenarnya yang ingin dibuat Jamila adalah …. meter.
Jawaban: D
Lebar = 2/ 1/2 x 3 meter
= 4 x 3 meter = 12 meter
10.Pak Ikhsan mengendarai mobil dari rumahnya ke kota tempat beliau bekerja sejauh 276 mil dengan kecepatan rata-rata 62 mil per jam…. (soal selengkapnya lihat di buku).
Jawaban: D
kecepatan saat pulang = 276/6,5 = 42,46 mil/jam
Kecepatan saat berangkat = 62 mil/jam.
Post a Comment for "Jawaban Uji Kompetensi Semester 2 Matematika Kelas 8 Halaman 311"